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Expressions for the general solution of the axisymmetric problem obtain ed
earlier in terms of two analytic functions [1, 2] are wansformed in such a man-
ner, that only one of these functions remains under the integral sign, This also
leads to the possibility of solving the axisymmetric problems by employing the
methods used in the solution of the plane problem, Basically, similar wansfor-
mations were employed in [3 ~ 5] for the particular case of a plane boundary,

A series solution for a hollow sphere with various boundary conditions at its
surface is used to illustrate the method,

1, As was shown in [2], the components of the elastic displacement in an axisymme
etric deformation of 2 solid of revolution can be written as
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Here z and r are the cylindrical coordinates (s is the axis of symmeuny), u», «
are, respectively, the axial and radial displacements of a point, x = 3— 4v, v is the
Poisson ratio, ¢ is the shear modulus, ¢ and ¢ are analytic functions of the complex
variable { = z + i¥, holomorphic in a symmetrical plane region D occupied by the
meridional section of the body, z, y are rectangular coordinates lying in the plane of
the above cross~section ( =z -axis coincides with the 2 ~-axis), and the points ¢ = z -}
4+ ir andt = z— ir lie on this plane within D. The order of integration in (1,1) is
arbitrary, The analytic functions satisfy the condition
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PO=0@, PO=v0 (1.2)

The region D is assumed to be simply connected, and its boundary L to be a piece-
wise smooth symmetrical contour without cusps and composed of arcs of continuous
curvature,

Assuming that the functions ¢ ({), ¢’ () and ¢ () are continuous up to the contonr
L, we make ¢ and : approach the corresponding points on the contour and perform
the integration in (1,1) along the arcs of the contour contained between these two
points, We write (1,1) as a single complex expzression
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26 (w — iv) = %S(p(c) U, c)ds—r——s [(Cz2—3)9 () +% (] U (t,0)ds
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which can be transformed into
4
26 (w — iu) = S [x (0) — o’ (5) — Y (a)] + f P(9) Q1 9) ds (1.3
I

where the points ¢, ¢, 0and 5 lie on L (here 3 and 7 are regarded as functions of
S and ¢ respectively),

- a8 2 3 - -
Qt.o)= WE_T[U {t o) — U(t,c)';;] +m T e +o—t—U( ol
(1.4)
and S is an operator on [ given by
.
S(n=—-—2—_| \1(9) U ¢t,9)ds (t.5)
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In the above transformations it was taken into account that (1,2) implies

t t

j ) U (t, s)ds = j ?(0) U (t,3)ds

r ¢
When the displacements are given on the surface of the body, Eq. (1.3) becomes an in-
tegral condition which must be satisfied by the boundary values of the analytic functions,
Although the left-hand part of (1. 3) is only defined for r > 0, we shall regard it is de-
fined everywhere on L. assuming in accordance with (1,2) that » is even and u is odd
in r.

2, Let us consider the case when the external forces are specified on the surface of

the body, Altering the formulas of [2] slightly, we can express the external force inten-
sities p, and p, by the boundary values of the analytic functions
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d’ ilmp (3) + (22 — 6) §* (3) + ¥ (9)] &1 (¢, 0) d5 2.1
2:tur2

Here r > 0, the points o and ¢ lie on the contow L,and s is the abscissa of the point

t on the arc,

Let us introduce the notation
& I3

', .
z (S) — § pz (S’) r'd.s', R (8) = Si:p (s ) 4 =z 773 ds’ —_Z (s )-‘ ds’ (2.&}
0
where the point z, of intersection of L with the axis of symmetry is taken as the origin,
We insert (2.1) into (2, 2) ad integrate with respect to s. Repeating now the transform-
ations of Sect, 1, we arrive at

R+—— =—S@E+39'C)+P O]+ \9(O) Qs+ V() +C (23

n'_/-‘-

Here C .is a real constant, the function Qo is defined by (1.4) with % = —1, and

vin=—2E2 % S[Sw R (24)

We assume R and Z to be defined everywhere on L and extend them, as even functions,
to the region of negative values of r

8, We introduce the following operator on L :
1 d
-1 B e — . h 3 g
S-Y(F) T S-F(t)U(t_ Tht ) de 3.4)
b

h(t, 1) = sign (Im ¢ Im7)
The operators (1, 5) and (3,1) are reciprocal to each other, Indeed, setting

I1(r)=-—-.;[1_§[gf(c)(](t, c)dc]U(t,t)h(t,t)

7 It'—i’lz
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L{t)=———— g gF(CS)U(U,T)h(t, ) dc]U(t,r) dt (3.2)
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and changing the order of integration, we obtain
1 .
= - U, 6 U, — td 33
hm=—~_+ '-I(c)[ig t.9) U (t,7) It_”] s @3.3)
t
I (t) =—__1_7§F (s) [% U, n) U (t, 1) dt]h(t, 6)ds (3.4)
n|t—t|;. ;

lo
Here ! = 1 (0, 7) denote the set of arcs 70, and G.7, where 6, = o if the points ¢
and < lie on the same side of the axis of symmetnry and o, = ¢ otherwise (see Fig, 1
the double line is the branch line of the radical) and I, = I (o, ).

Let us find the double mtegral in (3. 3). This is easily done by mtegratmg along the

arc dt
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When 7 is replaced by { ,the integrand function of the inner mtegral in (3, 4) is hol~
omorphic in the { -plane with a cut along I,, and its values at the opposing edges of
the cut differ only in sign, Therefore (after introducing the factor of 1) any closed
contour y enclosing I, (Fig,1) can be used as the contour of integration, Using the
theorem of residues to perform the integration over ¥ we obtain

—-—LSU(G HU @R, t)drv=—
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Using these equations we obtain the requixed indentities (see also [6])
d
§-1[S (] =—arh{t)=f

. 4 1 di
SIS AN=—7 12 (tH—m (1 -—5;7) La@)—L@)|=F (3.8)

The proof given here remains valid when L is a simple smooth arc without cusps,
the function f (o) belongs to the class H* and the function F (:) is such that the op-
erator (3,1) is an integrable function, This only requires that 7 (f) belong to the class
H (p) when p > 0.5.

4, Let us apply the operator S~ to both sides of (1, 3), Changing the order of inter-
gration and taking (3, 6) into account, we obtain

5P [ — T (1) = $ (1) + - \ @ (9) & (7, 9) do = 2681 (w — i) &1

djeo

K(r,c)::-l—sQ(t YU (t,t)d {4.2)

where both the kernel 'K and its detivatlve with respect to T are continuous on any
smooth part of L except at the point ¢ = z, where an integral singularity may appear,
The valusof X (v, t)and X (t, t) are easily calculated, and the last term of (4.1) can
then be written in the form

<
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Similarly, starting from (2. 3) we obtain
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7‘+1 S_ﬂ“s T)g[(t,G) at (4'5)
Ki(v o) = =3 D (f Ht—1t|
where K, is given by (4.2) in which Q is replaced by @, (and = by —1).

In the course of derivation of (4, 4) it was assumed that V (z) is a real function satisf-

ying (1, 2), and the following transformation was performed

S V)= — _1.. g %,-gl (t,t)hir,t)dt (4.6)

T
after which the value of V given by (2,4) was inserted and the order of integration
changed,

Equations (4, 1) and (4, 4) are either equivalent to (1, 3) and (2, 3), or can be transf~
ormed into the latter by means of the operator S. They express the conditions which
must be satisfied by the boundary values of the analytic functions in the case of the
first and second fundamental axisymmetric problem of the theory of elasticity, Neglect-
ing the integrals in the lefi~hand side gives equations expressing the boundary conditions
imposable on @ and ¢ in the plane case,

The function ¢ does not appear under the integral sign, This opens a possibility of
employing, in the course of solving the axisymmetric problem, the methods utilized
in solution of the plane case (expanding into power series, conformal mapping, reduct-
ion to the Muskhelishvili-Sherman integral equations, etc,),

In the case of a plane boundary we have ¥ = K, = Kk, = 0, and the operators (1, 5)
and (3, 1) can easily be reduced to the operators used [3 - 5] in establishing the connect-
ion between the axisymmetric and the plane state,

When the boundary is spherical, we have the following expression for the kernels

0K  (2x - Nt-+3 Ok (x+1Tt+5 %+1
— = == — K= —— —_— 1—h 4.
ot itV Ot ' 4t Vot 277 | ¢

7

5, The above reasoning can also be applied to the solids of revolution containing
internal cavities but nevertheless simply connected, although the region D itself is
multiply connected, Its boundary L is composed of the outer contour' Z . and the inner
contours Ly (k = 1, 2, ...n), which will be numbered in the order in which they intersect
the axis of symmetry,

The function ¢ (or ) holomorphic in D can be written in the form of a sum of the
functions Pk (or ¥i) (k= 0, 1, ..., n), where @, and ¥, are holomorphic everywhere
inside L,, the functions 9. and ¥; (¥ 2 1)are holomorphic everywhere outside the
corresponding contour i , and vanish at infinity, Moreover,

Hm S0 0y O+ B @1 =0 (k=1,2..0m) (5.1)

The line of integration in (1.1) can intersect the axis of symmetry at any point within
D. However the change of position of this point is accompanied by a change in the form
of ¢ and . In particular, if the line of integration intersects the axis of symmetry at
a point lying between the contours Lj and Lj;.1, then it should be assumed in all form-
ulas that n
Q) =00 (0) - ) P (5)sign (k—j —0.5)

k=1
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VO =00+ D Py B sign(k—; —05) (5.2)

RBe=i
Under this condition, (4,1) and {4, 4) hold separately for each of the contours Lx

8, Consider the axisymmetric problem for a hollow ealstic sphere bounded by. the
surfaces P == p, and p == p,. (Fig, 2), on which either
the displacements
2g§§§} -— 2 A?}Pn {g}!
Foul)

o0
2Gu? = YT — Z BAP P (=12 (B1)

n==]

or the external forces ) =
4 Ap s
P? == pi} 2 C’;{;? )

o e
) = (— 1y ﬂgx._li S 09p 1y 6.2y
. i n==l
Fig, 2. i =cos &)

where Py (i) are the Legendre polynomials and § is the polas angle, are given; In the
latter case we use the formula {2, 2) to obtain

2P = (— 4yt g LB 1-~t& (1 — 1 E BOP,/ (1)
L4ET
R = (— 1}}‘*‘-,;}339 ih S 40P, @) 63
¥ e

where 2nZ,% is the resultant of the forces applied to the corresponding surface,

‘Dn
AP =CP—BP, B =grTy (31

AP AP, =200 =12 5.4
Pl
Inserting (6, 1) and (6. 3) into (4, 1) - (4,4) we obtain the resnlting equations in the
form - - ey
. 17
A (v -é—r oA t@*mww?{t} (1-;§)+ _( QK d3; =

gy G) 1 i ; - n 1- 1 p(i)-g n =12 (6.5}
= 1 gy W 2
{2K+i)fi+ﬁf x— i
: - —hit,
it }fcjt“} 2p; i {7 5}
FD = (4P —nBD o™ akD), FP=AP —m—2yc? (8.8

Here ¢ s a constant, For the negative values of n we must put A, = A and
Bﬂ. == anmh

Ke(vs))=
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Equation (6, 5) is valid for both, the surface with prescribed displacements (Ay == )
and the swface with prescribed external forees (A3 = ),
We seek the analytic functions in the form of series

Py

el = > at" PO= 3 bt .7
Th=taem0C Tt (R
Tﬁﬁéﬁ&i’ﬁﬁeaﬁ & and &, ave real gnd
ot ™
ggkds, et m}mmpj m..},_ 244
! ( z)w 2n+1 E 1 20, Em(m‘*
£ *— A a, g €
= L PR i L0 B S 2 "
Tt e 1) nt§ + j ( 2 oy e.a in ?}-f-mmﬁt) {6.8}
{Rgb-1}
Ir can easily be seen that
i i
S Tk T a1 (@)

and the constant appearing in {8, 8} can be absarbed into U}
Let ys multiply both sides of (8, 5) by d¢ 7 {v~ {) and integrate over the contours
L, and L, When the point { falls outside D, the function ¥ is eliminated and we

find - -
2 5»-’& 5“3 n§ﬂ~% -+ 2 Yy B,a_ 27T e }“; -gg_f:;.éf &ﬁiﬂ B0
R==mid Pttt

whem
2 % s ot \ 2 ¥ e Rz
§Rm£ﬁ3-—§- ISy ey ?;WS‘W{%%‘ il m—1 §;M~Pi @ty
Br= (A1 + s -+ R} 7T — (R o Yo %) o2

b, = 2n %%E'i— (pa® wu MY, 4, = ng) e g) {B.41)
Frons {6, 10} we sasily obtain
ﬁmmf‘u-a = BpsB n.y
b= & niy~— BpgBn (n=0) (8.42)

the coefficient o, remaining undefined,

If the external forces are given on any of the surfaces, then the coefficient ey can
be found more conveniently with the aid of (6, 9), in which case we have
and the tonstants 007 need not be determined,

The function ¥ ({) can be found in a similar mamer, but § must in this case be
situated within D). Performing the necessary manipulations, we obtain

n+1 n—% D+
B Fﬁagﬁﬁdﬁ-&?}ﬁ"—ww—#ﬁg%

Zn -§-«i 25*%‘*&
(2n 4 B) Kb Bin 14 - #—h -
“*"13*3"*“ {23-%*1;};%:{—3} )] CpurPy L """'""‘?‘”* R e (6.14)

{F=1 when n 2V, ;=2 when # < 0 gnd the last term is omitted, whett n== 0 J,
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When the functions @ (¢) and ¥ ({) are known, the displacements of the body points
are easii'g; obtained from (1,1}, provided that we take into account

H

1 rdr 1 T—9 np .,

ﬁ;m‘Pan(p), - S Lg"gl(t, ngﬁ Vn_’}_r p Pm (n) (6.15)
t

Here m=n for n20, m=|n—1 for n<0, p= VL p=1zfp.

When a uniform pressure p; acts on L, and p, on L, (Lamé problem), we have
PP =(—1Y pjoos®, pP=(—1)p;sin®, ZV=—Ip(—p)pp,P' M
RD=1ppp, (PLW)— Pow)}, FP=4,=0 (1£0,—2)
1"'9% =%03p; A_g =34 (pPp1 ~ p2ipa), Ao —1 (f=12)
a,=0 (n=kl), b =0 (n=k1,—2), h=Yalx—a

As 3 o py — D22 P1— P2
_— o ; JUNE TPE SO U - 4.,
a1 = i A0 T eP—ed b_z = p13py P

2G (w ~ iu) = [¥3 (x— 1) 4y — b_gp73] (z—ir)
which coincides with the known solution,

Formulas analogous to (6,12) and (6, 14) were obtained by another method in 7],
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