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Expressions for the general solution of the axisymmetric problem obtained 
earlier in terms of two analytic functions [I, 23 are transformed in such a man- 
ner, that only one of these functions remains under the integral sign. This also 
leads to the possibility of solving the axlsymmetric paoblems by employing the 
methods used in the solution of the plane problem. Basically, similar transfer* 
mations were employed in f3 - 51 for the particular case of a plane boundary. 

A series solution for a hollow sphere with various boundary conditions at its 
surface is used to illustrate the method. 

1. As was shown in @I, the components of the elastic displacement in an axisymmr 
etric deformation of a solid of revolution can be written as 

t 

2Ge (z, I) = - & c fxcp Cl + @ - 6) cp’ (6) + 9 (01 gs 6, fit 4 0.5) 
2 
t 

g (t, t;) = V’Cl - q (C - 93 L(1 u, a = Gy, - t - t’, /4& 61 

Here I: and r are the cylindrical coordinates (I is the axis of symmerry), w, n 
are, respectively, the axial and radial displacements of a point, x = 3- 4v, v is the 
Poisson ratio, G is the shear modulus, cp and Q are analytic functions of the complex 
variable 6 = z + CJ t holomorphic in a symmetrical plane region D occupied by the 
meridional section of the body, Z, g are rectangular coordinates lying in the plane of 
the above cross-section ( x -axis coincides with the e-axis), and the points t = z + 

+ir andt=z- ir lie on this plane within D. The order of integration in (1.1) is 
arbitrary. The analytic functions satisfy the condition 
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Q (5) = ii& 9 (6) = zi (1.2) 

The region D is assumed to be simply connected, and its boundary L to be a piece- 

wise smooth symmetrical contour without Cusps and Composed of arcs of continuous 
curvature. 

Assuming that the functions cp (0, 9’ (Q and q (6) are Continuous up to the Contour 
L we make t and t approach the Corresponding points on the contour and perform 

the integration in (1.1) along the arcs of the Contour contained between these two 
points. We write (1.1) as a single complex expression 

c t 

2t3 (w - iu) = .-$ 
s 

‘p (G) u (T, G) dG + -& [@Z - G) ‘P’ (G) +  ‘# (G)l u (t* G) dG 

t 

u (t, a) = )/(Gli),(G4) 
which can be transformed into 

t 

2G (w -iu)=sIxp((1)-~~‘(6)-rp(b)l+Scp(a)Q(t,5)dJ 
T 

where the points 1, t, 0 and ; lie on I, (here 5 and ? are regarded as functions 

C and t respectively), 

(1.3) 

of 

2% 

and S is an operator on L given by 

S(f)=- 2 
!a 

zlt 
_;, \f(W’WW 

;: 

ln the above transformations it was taken into account that (1.2) implies 
f t 

(1.5) 

, 
J 

, 
0) U (t, a) ds = - I Q (a) U (t, 3) da 

r‘ T 

When the displacements are given on the surface of the body, EL& (1.3) becomes an in- 

tegral condition which must be satisfied by the boundary values of the analytic functions. 
Although the left-hand part of (1.3) is only defined for r > 0, we shall regard it is de- 

fined everywhere on L, assuming in accordance with (I. 2) that u) is even and u is odd 

in r. 

2. Let US consider the case when the external forces are specified on the surface of 
the body. Altering the formulas of @] slightly, we can express the external force inten- 
sities pz and pr by the boundary values of the analytic functions 

p, (.v) = - & -& , c [Q (5) - (22 - 4 0' (a) - 9 (4181 (t, 5) ds 
i 

I 

c ds 
p’ (s) = - f -$ _ [Q (3) - (2Z - 0) Q' t”) + ‘i’ (@I - - g 0, 5) 

i 



Reduction of the three-dimensional axlsymmetric problems 
to the boundary value problems 873 

Here r > 0, the points u and t lie on the contour L, and s is the abscissa of the point 
t on the arc. 

Let us introduce the notation 
s L 

Z (s) = s p, (s’) r'ds', R (s) = SC p, (s’) + & -g z (St)1 ds’ (2.2) 

i 0 

where the point zO of intersection of L with the axis of symmetry is taken as the origin. 
We insert (2.1) into (2.2) zrd integrate with respect to s. Repeating now the transform- 

ations of Sect. 1. we arrive at 
r 

R+ +z-- S lq?;;T + %” (a) + ‘p WI + c cp (0) Qo (tr 4 do + V 0) f C (2.3) 
I 
t 

Here C .is a real constant, the function Q is defined by (1.4) with x = -i, and 
to 1’ 

(2.4) 

We assume R and 2 to be defined everywhere on L and extend them, as even functions, 

to the region of negative values of r 

3, We introduce the following operator on L : 
c 

S-1 (F) =+-$ F(t) U(t, r)h(t,r) dt s 
7 

(3.1) 

h (t, 2) = sign (Im t. Imv) 

The operators (1.5) and (3.1) are reciprocal to each other. Indeed, setting 
'I t f (0) U (t, a) da 

1 
U (t, T) h (t, z) .&w 

If’--t’II 

F (a) U (a, T) h (r, a) do 
1 

U (t, T) dr (3.2) 

and changing the order of integration, we obtain 

U (k “1 U V, r’) -%]do 
It-t1 

(3.3) 

t 

I2 (t) E - i u (a, z) u (t, ‘c) dz h (t, a) ds 

nit 1 
(3.4) 

Here 1 = I (0, r) denote the set of arcs TO, and ez, where Q, = u if the points u 
and z lie on the same side of the axis of symmetry and o, = a otherwise (see Fig. 1 

the double line is the branch line of the radical) and IO = 2 (a, r). 

Let us find the double integral in (3.3). This is easily done by integating along the 
arc 

t 

- 4 J u (t, CT) u (t, ?) d” - u (I, B) u (7, T) di_ = 

0. It-t1 It-t I 
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t- i 

= xlt--i) i 
2 ln [U (7, T) + u (7, a)] + In (r - I, (“- t7 ) )I=* = $ [I + h (a, r)] 

t- l=S* 

When ? is replaced by 5 , the integrand function of the inner integral in (3.4) is hol- 
omorphic in the L -plane with a cut along Z,, and its values at the opposing edges of 

the cut differ only in sign. Therefore (after introducing the factor of r/2) any closed 
contour y enclosing 2, (Fig. 1) can be used as the contour of integration. Using the 
theorem of residues to perform the integration over Y we obtain 

s u (a, T) u (f, t) d-c = - 
lo 

ip-31 c 
_2n(t- r,; 

u (a,0 WWl;= !+!(i;;zJ 

Thus + 

Fig, 1. 
I2 (t) = +- 

c ( L 
F (a) 1 + ei) h (t, 6) da (3. 5) 

t--t 

Using these equations we obtain the require: indentities (see also [6]) 

s-’ 1s WI = -& I1 (7) = f 

- 12 (t)] = F 

The proof given here remains valid when L is a simple smooth arc without cusps, 
the function f (0) belongs to the class H * and the function F (t) is such that the op- 
erator (3.1) is an integrable function. This only requires that F (t) belong to the class 
H (IL) when P > 0.5. 

4. Let us apply the operator S-l to both sides of (1.3). Changing the order of inter- 
gration and taking (3.6) into account, w,e obtain 

- -/ d WJ @I - Tq (9 - $ (9 + -& s 
‘+’ (b) K (r, a) do = 2GS-’ (m - iu) 

; 

K (z, a) =i f c Q (4 ~1 U (1, 7) dt (4.2) ., 
1 

where both the kernel ‘K and its derivative with respect to T are continuous on any 
smooth part of L except at the point (I = so where an integral singularity may appear. 
The valuesof K (7, t) and K (r, <) are easily calculated, and the last term of (4.1) can 

then be written in the form 
* z 

Similarly, starting from (2.3) we obtain 
* 

cp (3) Ko (T, a) ds + (P (a) Kx (T, s) ds = 

(4.4) 
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(4.5) 

where &I is given by (4.2) in which Q is replaced by QO (and n by -i). 
In the course of derivation of (4.4) it was assumed that V (t) is a real function satisf- 

ying (1.. 2). and the following transformation was performed 

s-1 (V) = - + I sg1 (C, z) h (T’, 2) dt c (4.6) 

after which the value of V given by (2.4) was inserted and the order of integration 

changed. 
Equations (4.1) and (4.4) are either equivalent to (1.3) and (2.3) or can be transf- 

ormed into the latter by means of the operator S. They express the conditions which 

must be satisfied by the boundary values of the analytic functions in the case of the 

first and second fundamental axisymmetric problem of the theory of elasticity. Neglect- 
ing the integrals in the left-hand side gives equations expressing the boundary conditions 

imposable on cp and 9 in the plane case. 
The function -$ does not appear under the integral sign. This opens a possibility of 

employing, in the course of solving the axisymmetric problem, the methods utilized 

in solution of the plane case (expanding into power series, conformal mapping, reduct- 

ion to the Mmkhelishvili-Sherman integral equations, etc.). 
In the case of a plane boundary we have ii = K, = K, E b, and the operators (1.5) 

and (3.1) can easily be reduced to the operators used [3 - 51 in establishing the connect- 
ion between the axisymmetric and the plane state. 

When the boundary is spherical, we have the following expression for the kernels 

6. The above reasoning can also be applied to the solids of revolution containing 
internal cavities but nevertheless simply connected, although the region P itself is 

multiply connected. Its boundary L is composed of the outer contour’ L,~ and the inner 
COntOUrS Lk (k = 1, 2, . . .n), which will be numbered in the order in which they intersect 
the axis ot symmetry, 

The function a (or 9) holomorphic in D can be written in the form of a sum of the 
functions cPk (or $k) (k = 0, 1, . . . . n), where To and q. are holomorphic everywhere 
inside L,, the functions 0. and ‘1ph (k > 1) are holomorphic everywhere outside the 
corresponding contour Lk , and vanish at infinity. Moreover, 

lim : 1(x -$- i) ‘pk (6) + qPk (C)J = 0 (k = i,2, . . . n) (5.1) 
5-m 

The line of integration in (1.1) can intersect the axis of symmetry at any point within 
D. However the change of position of this point is accompanied by a change in the form 
of 9 and $. In particular, if the line of integration intersects the axis of symmetry at 
a point lying between the contours Li and Lj+l, then it should be assumed in all form- 
ulas that 

‘p (5) = ‘p0 (5) i- $ ‘pr (5) sign (h- - j - 0.5) 
h’=l 



6. Consider the atisymrmalxic probiem f~ IA hollow ealstic sohere boundled by the 
surfaces P = pt and P = b {Fig. 2). on which’either 
the dispkicements .% 
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When the functions cp (61 and $ (6) are known, the displacements of the body points 
are easily obtained from (1,1), provided that we take into account 

t 

s 

f 
1 

-=epR~m(P), 
S*d5 

77 r #(h 0 
-& s, 5%1(~,C)4= *;,',:" 

c 
PnPm’ (P) @.iS) 

1 
Here Jn=n for rs>o, m=/nl-- 1. for R < cl, p = JGq=?‘ P = z i p. 
When a uniform pressure pr axs on L, and pz on Lz (Lam& problem), we have 

Phi =E (- a)’ pj COS 6, $"f((-i)jpjSiRb, ti'=-'/ZfP -P')PjP j’;@> 

IT(j)= l/ZPjPj fpl@)- 'O(P)j, F+A,,d3 (n # 0, - 2) 

“9; = ‘l2Pj’PjF A-8 ==‘/I (p13pt - p+), hi"-4 (j=1;2) 

a?% =o (naE:l)r bn=O (n#i,-Z), bl=lf~@-i)al 

26 (111 - iu) = 1213 (x - 1) a, - b&-3] (2 -ir) 
which coincides with the known solution. 

Formulas analogous to (6,12) and (6.14) were obtained by another method in f7j. 
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